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The generalized Langevin equation �GLE� �L. Kantorovich, Phys. Rev. B 78, 094304 �2008��, which
describes dynamics of a finite and possibly highly anharmonic subsystem surrounded by an extended harmonic
solid, is simplified here assuming short-range interactions between atoms. We show that in this case quite
naturally the GLE can be worked into a form which corresponds to considering central atoms of the finite
region as governed by usual Newtonian mechanics, while the boundary atoms are treated as Langevin atoms,
i.e., they experience friction and random forces �the so-called stochastic boundary conditions �SBCs��. We
show that the random forces constitute a stationary Gaussian random process with the dispersion directly
related to the friction coefficient in a usual way. Next, we rigorously demonstrate that, even though not all
atoms are stochastic within the SBC model, the system should still arrive at canonical distribution at long
times. Since the SBC model follows directly from the general GLE description and can perform as a correct
NVT thermostat, we propose that the SBC is a method of choice if one wants to do nonequilibrium molecular
dynamics simulations correctly. Our derivation of SBC is physically more acceptable than given previously
when the central region atoms were assumed to be much heavier than those in the surrounding lattice �the
zero-frequency approximation�.
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I. INTRODUCTION

In many applications such as relaxation of excited local
phonons in a solid,1 interaction of fast projectiles with crystal
surfaces,2–4 chemisorption, and decomposition of molecules
adsorbed on surfaces5–9 or in fracture propagation simu-
lations,10,11 conventional molecular dynamics �MD� tech-
niques based on equilibrium NVT thermostats12–18 are nor-
mally used. This approach can only be used if the energy
release within the simulated region is small as compared
with the average energy of the region itself, i.e., when the
dissipated energy due to some nonequilibrium process under
study is relatively small and thus temperature increase of the
simulated region due to this process can be neglected. How-
ever, this is not always the case, e.g., when high energy
particles are impinged on a crystal surface creating a “hot
spot” which causes significant local heating of the impact
region with subsequent energy transfer to the bulk of the
material. In such cases one cannot use MD simulations with
periodic boundary conditions. However, a physically more
significant problem is due to usage of MD techniques which
are, strictly speaking, only applicable in thermodynamic
equilibrium. The problem becomes even more difficult for
the equilibrium methods when there is a gradient of tempera-
ture in the system created, e.g., by two opposite walls held at
different temperatures as in heat transport experiments.

To treat this kind of problems, Adelman and Doll2 �AD
hereafter; see also Refs. 3, 4, and 19–22� proposed a gener-
alized Langevin equation �GLE� method in which dynamics
of a finite region is actually studied; however, the existence
and energy transfer to or from a macroscopically large sur-
rounding region is also accounted for within the approxima-
tion that the whole crystal is harmonic. It was shown in the
previous paper of this series23 that there is a logical incon-
sistency in AD which essentially invalidates their derivation

of the Brownian �or Langevin� form of the GLE. Instead,
another method was proposed in Ref. 23 which is free from
the problem and is also not based on assuming the region of
interest to be harmonic. In fact, this region �region 1 hereaf-
ter� can be arbitrarily anharmonic. Still, it is assumed that the
surrounding macroscopically large region �region 2� is har-
monic and the two regions interact with each other in such a
way that the corresponding interaction part of the Hamil-
tonian is linear in displacements u2 of atoms in region 2.

Although region 1 can be arbitrarily anharmonic, it was
also rigorously shown in Ref. 23 using the method of Ref.
24, that after the source of local heating has ceased, region 1
will arrive at thermodynamic equilibrium. The corresponding
canonical distribution is based on the Hamiltonian in which
atoms in the two regions interact via an effective interaction
corresponding to atoms in region 2 clamped at instantaneous
equilibrium positions. The latter instantly adjust to the cur-
rent positions of atoms in region 1.

Although it was indicated in Ref. 23 that there is a way of
implementing the method exactly, this is still very difficult.
Therefore, a natural question arises of whether it is possible
to make some reasonable approximations to the GLE to
transform it into a more accessible technique, and not to
loose all the nice physics it is based upon along the way.
Here we suggest such a method: by assuming a short-range
interaction between atoms �and a number of other plausible
assumptions such as, e.g., Markovian approximation� we
show that the GLE can be rigorously manipulated into a
much simpler and actually more familiar form, in which in-
ternal atoms of region 1 move in accordance with usual
Newtonian dynamics, while boundary atoms, separating the
internal atoms from those in region 2, are treated as Lange-
vin atoms. This means that the boundary atoms experience
also friction and random forces, the approach we shall refer
to as stochastic boundary condition �SBC� method. This way
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the boundary atoms serve as a buffer: the friction forces
would take the extra energy out of the “normal” atoms of
region 1, while the random forces would bring the energy in
by doing a work on the boundary atoms. We also derive a
relationship between the dispersion of the random force and
the friction coefficient, and this appears to be the same as is
normally used in running Langevin dynamics.4,25–27

Since the SBC is an approximation, one may ask if the
general behavior of the system under the SBC will be still
the same as of that governed by the exact GLE. In particular,
the important question is of whether or not the system will
return to the thermodynamic equilibrium described by the
correct canonical distribution after the source of the local
perturbation has ceased. We show that this is also the case by
proving a theorem: in spite of the fact that not all atoms in
the simulation region �region 1� are stochastic �in fact, it
would be sufficient if only one atom was stochastic�, the
system will arrive at the thermodynamic equilibrium, and for
this to be true, exactly the same relationship between the
dispersion of the friction force and the friction should hold as
derived directly from the GLE. In other words, in equilib-
rium the energy lost through friction is to be exactly com-
pensated by the energy influx through the stochastic forces
on boundary atoms. Thus, the SBC conserves the main fea-
tures of the exact consideration based on the GLE and is thus
internally consistent.

One may go even further and assume that even in the
cases of higher temperatures when region 2 cannot be con-
sidered as purely harmonic and thus the GLE is not strictly
speaking applicable, one can still apply the SBC to perform
nonequilibrium MD simulations on a finite region of interest.
This assumption is supported by the theorem, mentioned
above, that under the SBC any system will acquire canonical
distribution at long enough times. It is important that the
proof of this theorem given here does not depend on whether
atoms in region 2 are harmonic or not.

Hence, in this paper we derive a simple scheme which can
be used to perform MD simulations on region 1 taking into
account the presence of region 2, including possible energy
transfer between the two regions. Since the SBC method is
consistent with GLE, at least for not very large temperatures,
it may serve as a practical way of performing MD simula-
tions in the NVT ensemble, both equilibrium and nonequilib-
rium �although the latter is more important of course, as
other equilibrium MD techniques also exist�.

Note that this type of MD simulations based on perform-
ing Langevin dynamics for boundary atoms of the simulation
region has already been used by a number of authors,5,28–30

although no proof has been given; it was only hinted in Ref.
30 that SBC may be derived from the GLE. Note also that
the “zero-frequency” method of deriving Langevin �Brown-
ian� dynamics from the GLE suggested previously19 we be-
lieve is less acceptable than ours since the former method is
based on a physically incorrect assumption that atoms in
region 1 are much heavier than atoms in region 2.

The plan of the paper is as follows. In Sec. II we derive
the SBC from the GLE. In Sec. III we consider the condition
of thermodynamic equilibrium for a system governed by the
SBC. Finally, the paper closes with a short discussion and
conclusions.

II. DERIVATION OF SBC FROM GLE

In Sec. II A we shall briefly outline the main ideas behind
the GLE and shall introduce all the necessary notations.

A. GLE

Consider an extended system consisting of atoms moving
around according to the Newtonian dynamics. We split the
system into two regions: a finite region 1 and the surround-
ing region 2. Positions of atoms in region 1, denoted by the
vector column r1�t�= �ri�t��, i�1 �we shall not show explic-
itly Cartesian components of vectors and matrices to sim-
plify notations�, are arbitrary within region 1, while atoms in
region 2 oscillate about their equilibrium positions and hence
we shall describe their actual positions via displacements uj,
j�2, comprising the vector column u2�t�= �uj�t��. The
Hamiltonian of the whole system is

H = H1 + H2 = H1 + �1

2 �
j�2

mju̇j
2 +

1

2 �
j,j��2

uj� j j�uj��
+ �

j�2
hjuj , �1�

where H1=T1+U1 is the Hamiltonian of atoms in finite re-
gion 1, including their kinetic, T1, and potential, U1, ener-
gies, the terms inside the square brackets describe the har-
monic region 2 with mj being the mass of atom j�2, u̇j its
velocity, and � j j� elements of the region 2 force-constant
matrix �22= �� j j��, and the last term corresponds to the in-
teraction between the two regions with −hj being the force
with which atoms in region 1 act on atom j. This force is
generally time dependent since atoms in region 1 change
their positions. Note that we assume that the interaction en-
ergy is linear with respect to displacements of atoms in re-
gion 2. The dagger hereafter is used to indicate the trans-
posed vectors and matrices.

It was shown in Ref. 23 that upon solving for displace-
ments in region 2 and performing statistical averaging with
respect to this region, the following GLE for atoms in region
1 is obtained describing their average trajectory:

m1r̈1 = f̃1 + R1 − 	
0

t

�11�t,��ṙ1���d� , �2�

where m1 is the diagonal matrix of region 1 atomic masses.
Then,

f̃1 = f1 + V12�t�D22
−1V2�t� �3�

is the effective force acting on atoms in region 1. In particu-
lar, f1 is the force due to other atoms in region 1, while the
second term is due to interaction with atoms in region 2
clamped at their instantaneous equilibrium positions which
follow actual positions of atoms in region 1. D22
=m2

−1/2�22m2
−1/2 is the region 2 dynamical matrix with eigen-

values ��
2 and eigenvectors e�, while m2 is the diagonal ma-

trix of region 2 atomic masses. The vector V2= �Vj�
= �hj /
mj� corresponds to the minus force acting on region 2
atoms, while V12=

�V2

�r1
= �

�Vj

�ri
� is its derivative taken with re-
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spect to positions of atoms in region 1. Since atoms in region
1 move, both the vector V2�t� and the matrix V12�t� are gen-
erally time dependent.

The last two terms on the right-hand side in Eq. �2� origi-
nate from vibrations of atoms in region 2. In particular,
R1�t�= �Ri�t�� is the force due to unknown initial positions of
atoms in region 2 and the last term in Eq. �2� describes
friction with memory. The random force R1 is proportional to
the matrix V12. Atoms in region 2 are assumed to be in ther-
modynamic equilibrium and thus perform as a heat bath de-
scribed explicitly by the corresponding canonical distribution
with the region 2 Hamiltonian H2 which contains interaction
between the two regions �see Eq. �1��. The random force is
linear with respect to initial positions and velocities of region
2 atoms. Since the Hamiltonian of region 2, H2, is quadratic
with respect to coordinates of region 2 atoms, the random
force can be considered as a Gaussian stochastic process
with distribution

P�R1;t� � exp�−
1

2
R1

†S11
−1R1 , �4�

where the dispersion matrix S11, given by the equal time
correlation function of the random force, is exactly propor-
tional to the temperature ��=1 /kBT�,

S11 = �R1�t�R1
†�t�� =

1

�
V12�t�D22

−1V21�t� . �5�

The different time correlation function of the random force,

�R1�t�R1
†�t��� �

1

�
�11�t,t�� =

1

�
V12�t��22�t − t��V21�t�� ,

�6�

is exactly proportional to the friction kernel in the last term
in Eq. �2� �which manifests itself as a fluctuation-dissipation
theorem31� and is related to the matrix

�22�t� = �
�

e�e�
†

��
2 cos���t� . �7�

We see that in general the random force is not a stationary
process in exact formulation since the correlation function
depends on both times, not just on their difference. However,
as will be demonstrated in Sec. II B, under certain, rather
plausible, assumptions it becomes the one.

B. Stochastic boundary conditions

Here we shall show, that, under the assumption of a short-
ranged interaction between atoms, GLE �2� can be manipu-
lated into a simple form which corresponds to considering
only the boundary atoms by means of the Langevin �or
Brownian� dynamics, the method which is referred to as the
SBC. To this end, let us assume that nondiagonal elements of
the dynamical matrix, Dkk�, are equal to zero if the distance
between any atoms k and k� is larger than a certain critical
distance. In this case we can split region 1 into two subre-
gions C �central� and L �Langevin, see later�. Region L
serves as an appropriate buffer region between regions C and

2. Atoms in region C are allowed to move arbitrarily, while
atoms in regions L oscillate about their equilibrium positions,
similarly to atoms in region 2. Therefore, positions of atoms
in region L will be described by the vector column of dis-
placements uL= �ui�, i�L. The schematic of the partitioning
for a bulk and surface systems is shown in Fig. 1.

By choosing region L appropriately, we may assume that
there is no interaction between atoms of regions 2 and C;
however, both regions interact with atoms in the buffer re-
gion L. This explicitly means that the elements Vj �j�2� of
the vector column V2= �Vj� are

Vj =
1


mj

hj =
1


mj
�
i�L

� jiui = �
i�L


miDjiui, j � 2, �8�

so that elements Vij of the matrix V12= �Vij� become

Vij =
�Vj

�ui
= �0 if i � C

1

mj

�ij = 
miDij if i � L . � �9�

Since Vij =0 if i�C, we first see that the random force acts
only on atoms from the buffer region L since R1�t� contains
V12 as a common prefactor.23 This means that the integral
friction term is also to be applied to atoms from region L
�this also follows directly from Eqs. �2� and �6��.

Finally, if we look at the definition of the effective force

f̃1 acting on atoms in region C �see Eq. �3��, then we notice
that it is equal to f1, i.e., this is the force due to all atoms in
region 1=C�L, while the additional term fL

�20��t�
=VL2D22

−1V2 acts only on atoms i�L from the buffer region.
Therefore, equations of motion for atoms in central region C
look as in ordinary Newtonian dynamics,

mir̈i = f i, i � C , �10�

while the equations of motion for atoms in the buffer region
read

C

... ...

2D unit cell

C

(a) (b)2

2

L

L

FIG. 1. Partitioning of an extended system into regions used in
implementing the short-range approximation: �a� a bulk system, no
periodic symmetry is present, and �b� a surface system, which has a
two-dimensional �2D� periodic symmetry in the direction across the
surface. Region 1 is split into two subregions: the central region C
and a buffer region L separating regions C and 2. Regions L and 2
are both harmonic regions where atoms oscillate about their equi-
librium positions, while atoms in region C move arbitrarily. Only
atoms in region L are shown to experience friction and random
forces, i.e., these are Langevin atoms.
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mir̈i = f̃ i + Ri − � �
i��L

	
0

t

�Ri�t�Ri�
† ����ṙi����d�, i � L .

�11�

The force f̃ i above, which effectively originates from the
interaction of atom i with all atoms in regions 1 and 2, can be
written in more detail since atoms in region L are assumed to
be harmonic,

f̃ L = fL
�C� − �LLuL + fL

�20��t� , �12�

where fL
�C� is the force on atoms i�L due to all atoms in

region C, while the second term is due to harmonic atoms in
region L and so it is proportional to their displacements uL
and the corresponding force-constant matrix is given by �LL.

The last term in the force f̃ L accounts for the interaction of
atoms i�L with all atoms in region 2 clamped at their in-
stantaneous equilibrium positions �see Eq. �3��,

fL
�20��t� = VL2D22

−1V2 = �L2�22
−1�2LuL,

so that the final force becomes

f̃ L = fL
�C� − ��LL − �L2�22

−1�2L�uL = fL
�C� − �̃LLuL. �13�

This is indeed the total force acting on atoms in the buffer
region due to all atoms in the system; in particular, atoms in
region 2 are in equilibrium positions which dynamically
change as the atoms in region L move. Note, however, that
within the short-range approximation we are concerned with
here, this effect may be considered as small since the corre-
sponding contribution is of the second order with respect to
the off-diagonal elements of the force-constant matrix, �L2.

The correlation function of the random force �Eq. �6�� in
the short-range approximation becomes

�RL�t�RL
†�t��� =

1

�
VL2�22�t − t��V2L. �14�

Since VL2 does not depend on time within the short-range
approximation �Eq. �9��, the correlation function now de-
pends on the time difference. In other words, the random
process within this approximation becomes stationary ex-
actly.

At the next step, we shall assume that there is no correla-
tion between random forces acting on different atoms of re-
gion L and that there is no dependence on the Cartesian
components of the forces 	 ,	�=x ,y ,z, i.e.,

�Ri	�t�Ri�	����� � 
ii�
		��Rix�t�Rix���� , �15�

where i , i��L. Moreover, we shall assume that the random
forces Ri are statistically independent of each other so that
each component of the force, Ri	 �	=x ,y ,z�, can be drawn
from its own Gaussian distribution �cf. Eq. �4��,

P�Ri	� =
1


2��i	

exp�−
Ri	

2

2�i	
2 , i � L , �16�

with the dispersion

�i	 = �Ri	
2 �t�� =

mi

�
�DL2D22

−1D2L�i	,i	 =
1

�
�VL2�22�0�V2L�i	,i	

=
1

�
��L2�22

−1�2L�i	,i	, i � L �17�

as follows from Eqs. �5� and �9�. Note that in this case the
probability distribution of the random force on atom i does
not anymore depend on time. In addition, the dispersion does
not depend on atomic masses �only on the temperature and
the interaction between atoms�.

Therefore, collecting all these results, we arrive at the
following equation of motion for atoms in region L:

mir̈i = f̃ i + Ri − �	
0

t

�Rix�t�Rix����ṙi���d�, i � L . �18�

At the final step, we apply the Markovian approximation
assuming that the correlation function of the random force
decays sufficiently fast with time,

ṗi = f̃ i + Ri − ipi, i � L , �19�

where pi=miṙi is the moment of atom i, while

i =
�

mi
	

0

t

�Rix�t�Rix����d� ⇒
1

mi
	

0

�

�VL2�22���V2L�ix,ixd�

�20�

is the friction coefficient. The time integral can be calculated
approximately as

	
0

�

�VL2�22���V2L�ix,ixd� �
1

2
�VL2�22�0�V2L�ix,ix
� ,

with 
� being a constant of the dimension of time which
depends on the rate of the actual decay of the matrix �22���
with �. The factor 1

2 corresponds specifically to a linear de-
cay of �22��� to zero over the time 
� and has been chosen
here for convenience. Using now Eq. �17�, we can relate the
dispersion and the friction coefficient as follows:

�i	 =
mi

�

2i


�
=

2miikBT


�
. �21�

This expression is identical to that normally used in running
Langevin MD simulations4,25–27 if 
� has the meaning of the
MD time step. Thus, it is assumed in these simulations that
the random force autocorrelation function decays over a very
short time corresponding to the MD time step.

Thus, we have shown employing a number of approxima-
tions that the GLE transforms into a set of equations of mo-
tion in which atoms inside region 1 �the central region C
atoms� are governed by ordinary MD equations, while the
boundary atoms �in region L� move in accordance with the
Langevin dynamics. In the latter case the random force Ri	 is
drawn at random at each time step using Gaussian distribu-
tion �16� with dispersion �17�, related to the friction i.

Note that another derivation of the Brownian dynamics
from the GLE is also possible19 based on expanding the fric-
tion kernel in the Fourier space around the zero frequency.
This particular route in deriving the Langevin �or Brownian�
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form of the GLE implies that atoms in region 1 are much
heavier than those in the surrounding region 2. Our deriva-
tion presented in this section does not assume this: it is only
based on restricting spatially interaction between atoms and
hence is physically more acceptable.

III. THERMODYNAMIC EQUILIBRIUM IN
LANGEVIN DYNAMICS

In this section we shall prove that a system described by
SBC �Eqs. �10� and �19�� will arrive at thermodynamic equi-
librium at long enough times which is a canonical distribu-
tion with the same temperature T as used in dispersion for
the random force in Eq. �21�. It is important to emphasize at
this point that the theorem we are about to prove here is
actually more general as it relies entirely on the equations of
motion of atoms in region 1 and hence does not require to
have Langevin atoms necessarily at the boundary of the
simulation region. In fact, we shall prove here that for any
system of atoms described by Newtonian dynamics, with all
or only some �arbitrary� atoms being stochastic, the system
arrives at the thermodynamic equilibrium described by the
canonical distribution corresponding to the temperature used
in sampling the random forces. This theorem establishes rig-
orous grounds for using Langevin dynamics, with all or only
some of the atoms being stochastic, in NVT ensemble MD
simulations on arbitrary systems, solid or liquid. At the same
time, it justifies that MD simulations based on the SBC do
not loose this important property of reaching the correct
equilibrium in spite of the approximations involved in deriv-
ing them from the exact GLE.

Consider a system of N degrees of freedom �“atoms” for
short� which positions and momenta are given by ri and pi
=miṙi, i=1, . . . ,N. Let V�r1 , . . . ,rN� be the potential energy
of the system depending somehow on the atomic positions.
We shall assume that there are two types of atoms �i.e., de-
grees of freedom� in the system: M atoms are normal atoms
governed by usual Newtonian dynamics, while MS=N−M
atoms are Langevin atoms,

mnṗn = fn, n = 1, . . . ,M , �22�

msṗs = fs − sps + Rs, s = 1, . . . ,MS, �23�

where the force f i=− �V
�ri

. Indices n and s are to be used for
normal and Langevin atoms, respectively. The random force,
Rs, is Gaussian and stationary with probability �16�. We may
assume for generality that all dispersions and friction coeffi-
cients are different, i.e., �s and s may depend on the atom
index s.

To study system dynamics, we shall discretize the equa-
tions of motion in the usual manner by introducing the time
step �. Then, because of the random forces being indepen-
dent at each step and between steps, this way we shall con-
struct a discrete-time Markovian stochastic process which we
shall write explicitly for all coordinates, both positions and
momenta,

rn
�k� = rn

�k−1� +
pn

�k−1��

mn
, pn

�k� = pn
�k−1� + fn

�k−1�� , �24�

rs
�k� = rs

�k−1� +
ps

�k−1��

ms
,

ps
�k� = ps

�k−1� + �fs
�k−1� − sps

�k−1��� + �s
�k�, �25�

where the superscript in parentheses indicates the time step
and �s

�k� are uncorrelated Gaussian distributed random vari-
ables with the dispersion ds=�s� �since �s�=Rs�. Note that
only one equation contains the random process, all other
equations are deterministic.

During the system evolution, coordinates of every atom
would change along some trajectory; for instance, atom n
coordinates run through the sequence rn→rn

�1� ,rn
�2� , . . . ,rn

�k�,
while for its momentum we similarly have pn

→pn
�1� , pn

�2� , . . . , pn
�k� after k time steps. The system trajectory

is defined by the initial conditions, which are expressed by
the initial distribution function P�r�0�p�0���P�r�0� , p�0��,
and all the random forces which have been drawn to create
the trajectory for each atom s=1, . . . ,MS at every time step
l=1, . . . ,k. Since all random variables �s

�k� are completely
independent, both in terms of atom, s, and the time step
numbers, the probability for choosing the particular random
forces is given by the product of the Gaussians correspond-
ing to each of them,

P���s
�l�:l = 1, . . . ,k; ∀ s�� = �

l=1

k

�
s=1

MS 1


2�ds
2
exp�−

1

2ds
2 ��s

�l��2� .

�26�

The forces on stochastic atoms determine their momenta at
each time step. Since in the following, we would like to
calculate the probability to have particular positions and mo-
menta for our atoms, we should calculate the probability for
the stochastic atoms to have particular momenta due to ac-
tion of the stochastic forces. This can be done using the
corresponding Jacobian which is given by the determinant of

the matrix of derivatives: �
�ps

�l�

��s�
�l��

�. One can see explicitly from

the equations of motion �Eq. �25�� that this matrix has a
triangular block structure with respect to the time step indi-
ces l , l� due to causality; the momenta ps

�l� of atoms at time
step l are independent of random forces drawn during future

time steps l�� l. Also, for the same time step,
�ps

�l�

��s�
�l� =
ss�, i.e.,

the diagonal blocks are exactly unit matrices. This means
that the Jacobian of transformation is equal to unity, and,
therefore, the probability for the stochastic atoms to have
their momenta along the system trajectory, P��ps

�l� :
l=1, . . . ,k ; ∀s��, is equal to the probability of forces �Eq.
�26��, in which we should replace the forces by the momenta
using equations of motion �Eq. �25��.

As we deal with the Markovian process here, the prob-
ability to find the system after k time steps in a particular
point of the phase space, provided the system has gone along
the particular trajectory �ri→ri

�1� ,ri
�2� , . . . ,ri

�k� ; i=1, . . . ,N�
and �pi→pi

�1� , pi
�2� , . . . , pi

�k� ; i=1, . . . ,N�, is given by the
product of all transition probabilities for each pair of con-
secutive time steps, i.e.,
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P�r�1�, . . . ,r�k�;p�1�, . . . ,p�k��

= W�r�k�,p�k��r�k−1�,p�k−1��

�P�r�1�, . . . ,r�k−1�;p�1�, . . . ,p�k−1��

= W�r�k�,p�k��r�k−1�,p�k−1�� . . .

�W�r�2�,p�2��r�1�,p�1��P�r�0�;p�0�� , �27�

where r�l�= �r1
�l� ,r2

�l� , . . . ,rN
�l�� and p�l�= �p1

�l� , p2
�l� , . . . , pN

�l�� are
coordinates and momenta of all atoms at time step l and

W�r�,p��r,p�

= ��
j=1

N


�rj� − rj −
�

mj
pj��

n


�pn� − pn − fn��

� �
s

1


2�ds
2
exp�−

1

2ds
2 �ps� − ps�1 − s�� − fs��2�

�28�

is the corresponding transition probability of the elementary
process �r , p�→ �r� , p��. Here we have not shown the indices
of the particular time steps for simplicity of notations accord-
ing to a simple agreement we shall adopt from now on: non-
primed quantities correspond to the previous time step t,
while primed to the next one, t�= t+�. Delta function terms
in the expression above take care of the deterministic vari-
ables which do not directly depend on the stochastic forces;
these are positions of all atoms and momenta of normal at-
oms. To calculate the probability P�r� ; p�� for the system to
arrive at the phase-space point �r� , p�� via any route, one has
to integrate over all the variables �coordinates and momenta�
corresponding to time steps preceding the final one, in which
case one writes the recurrence relation between such prob-
abilities at adjacent times as follows:

P�r�;p�� =	 dr	 dpW�r�,p��r,p�P�r;p� . �29�

Once the transition probability has been derived, one can
study the dynamics of the system probability distribution in
time. However, we set for ourselves here a much more mod-
est objective which is to obtain the system distribution func-
tion at long enough times, i.e., the stationary distribution
which does not depend on time anymore. In particular, we
would like to find the dispersion of the random forces distri-
bution, ds, which would guarantee the system to arrive at
canonical distribution of some predefined temperature T. To
this end, we assume that at some time step the system, de-
scribed by the coordinates r and momenta p, satisfies the
canonical distribution of temperature T,

P0�r;p� =
1

ZV
e−�V�r��

j=1

N 
 �

2�mj
e−�pj

2/2mj , �30�

where ZV is the coordinate part of the partition function,
while its momentum part has been written above explicitly.
The distribution at the next time step, characterized by coor-
dinates and momenta r� and p�, respectively, will then satisfy
recurrence relation �29� in which the distribution in the inte-

grand on the right-hand side is P�r ; p��P0�r ; p�.
Let us calculate the distribution function P�r� ; p�� by in-

tegrating canonical distribution �30� with transition rate �28�
in formula �29�. We shall perform the integration with re-
spect to r first. Because of the delta functions in the transi-
tion probability, this simply results in the substitution rj

→rj�− �
mj

pj in the potential-energy term whereby making it
dependent on the atomic momenta pj. We expand the poten-
tial energy,

V��rj� −
�

mj
pj� = V�r�� + �

j=1

N

f j�pj
�

mj
+ O��2� ,

where f j�=−� �V�r�
�r �r=r� is the force acting on atom j at time t�,

and then integrate over momenta of all normal and stochastic
atoms. The calculation is simple although slightly cumber-
some. It yields

P�r�;p�� =
e−�V�r��

ZV
Pn��pn��Ps��ps�� , �31�

where distributions of momenta for normal and stochastic
atoms are, respectively,

Pn��pn�� = �
n=1

M 
 �

2�mn

�exp�−
�

2mn
��pn��

2 + 2�pn��fn� − fn� + O��2��� ,

�32�

Ps��ps�� = �
s=1

MS 1


2��s
2
exp�−

1

2�s
2 �ps� + �fs� − fs�� + O��2��2� ,

�33�

and we have introduced the following notation:

�s
2 = ds

2 +
ms

�
�1 − s��2. �34�

The r�-dependent part of the distribution at time t� in Eq.
�31� is exactly the same as required by the Gibbs canonical
distribution. It order for the whole expression to be truly
canonical, the following two factors in Eq. �31� describing
momenta distributions of normal and stochastic atoms should
be of the Maxwellian form. Since the difference in the forces
calculated at two adjacent time steps t and t� is of the first
order in �, i.e., f j�= f j +O���, the terms with the difference of
forces in the exponentials of both momenta distributions
above are, in fact, of the second order in �. Dropping all
second-order terms, we see that the distribution of momenta
of normal atoms �Eq. �32�� immediately acquires exactly the
required Maxwellian form. The momenta distribution of sto-
chastic atoms �Eq. �33�� would become the one if only �s

2

=
ms

� . Using Eq. �34�, one finds, to the first order in �, that the
dispersion ds

2 must satisfy the following relationship: ds
2

=2mss� /�. Therefore, we shall obtain for the dispersion of
the random force, �s

2=ds
2 /�2, exactly the same expression

�21� as in Sec. II B. Thus, we have proven that in order for a
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system of atoms, containing an arbitrary subsystem of
Langevin atoms, to reach thermodynamic equilibrium corre-
sponding to the correct Gibbs canonical distribution, the dis-
persions of the random forces should be related to the fric-
tion coefficients in the same way as derived from the GLE.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have derived a simplified version of the
GLE, the method which is referred to as SBC. This has been
done assuming interaction between atoms has a certain range
�the short-range approximation�. This method is concerned
with treating dynamics of an extended system by means of a
finite subsystem �region 1� which in turn is split into two
subregions: C and L. Region C atoms are governed by ordi-
nary Newtonian dynamics due to forces from all other atoms,
while region L atoms acquire in addition friction and random
forces. The latter are shown to represent a stationary stochas-
tic process which is Gaussian distributed with dispersion di-
rectly related to the friction coefficient of the friction force in
the usual way.4,25–27 Region L separates region C from the
rest of the extended system �which is not considered explic-
itly� and serves as a buffer controlling the heat flow between
them. This paper should serve as a solid foundation for a
number of approaches5,28–30 which were proposed earlier on
intuitive grounds. In a certain sense, SBC could be consid-
ered as an embedding for classical MD simulations.

Note that the method of deriving Langevin �Brownian�
dynamics from the GLE suggested previously19 we believe is
physically less acceptable than ours since the former method
is based on assuming that atoms in region 1 are much heavier
than atoms in region 2 �zero-frequency approximation�. We
have also proven an important theorem stating that any sys-
tem of atoms containing at least one stochastic �or Langevin�
atom will necessarily arrive at long enough times at thermal
equilibrium corresponding to the Gibbs canonical distribu-
tion. This fact has important implications. Indeed, it was
shown in Ref. 23 that a system described by the exact GLE

should acquire thermal equilibrium corresponding to the ca-
nonical distribution. Since the SBC equations represent a
simplified version of the GLE and thus may loose this im-
portant property of thermal equilibrium due to the nature of
the approximations made, the theorem actually guarantees
that this is not the case, and the SBC presents an internally
consistent scheme capable of reaching the correct equilib-
rium. This fact may be used to justify the use of the SBC for
a wider class of systems for which the GLE derived in Ref.
23 is not strictly applicable, e.g., solids at high temperatures
or even liquids. However, the found relationship between the
SBC and the GLE suggests which atoms in the simulation
box are to be treated as stochastic: it follows from the GLE
that these should be the boundary atoms.

Another important implication is that, since the SBC
method was derived from the GLE, this must be the method
of choice in running MD simulations of nonequilibrium pro-
cesses. Note that usually employed methods based on Nose
thermostat12–18 have been derived for treating NVT en-
sembles in thermal equilibrium and, strictly speaking, are not
applicable to nonequilibrium situations. In particular, SBC is
a natural method in applying to situations in which there is a
temperature gradient, e.g., for heat transport MD calcula-
tions. In this case the MD calculation would involve having
two stochastic boundary regions separating the central region
from either of the environment regions, held at different tem-
peratures, and the dispersions of the Gaussian distributions
used to draw the random force for each of the boundaries
would be different due to different temperatures. A similar in
spirit method for treating heat transport in MD simulations
by introducing “thermal walls” at different temperatures was
proposed in Ref. 32.
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